Weighted Least Squares Approximate Restricted Likelihood Estimation for Vector Autoregressive Processes

نویسندگان

  • WILLA W. CHEN
  • W. W. CHEN
چکیده

We derive a weighted least squares approximate restricted likelihood estimator for a kdimensional pth order autoregressive model with intercept, for which exact likelihood optimization is generally infeasible due to the parameter space which is complicated and highdimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and non-stationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zerointercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator which has a different distribution with significantly higher bias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Least Squares Approximate Restricted Maximum Likelihood Estima - tion of Vector Autoregressive Processes

4 Appendix S-1 4.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-1 4.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-4 4.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-8 4.4 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

A Maximum Likelihood Parameter Estimation Method for Nonlinear Dynamical Systems

This paper presents an original method for maximum likelihood parameter estimation in nonlinear dynamical systems with highly correlated residuals. The method relies on an autoregressive representation of the residuals to build an estimate of the inverse of its covariante matrix. Theoretical concepts are developed and we provides a successful application of the method on a twoparameters estimat...

متن کامل

The Doubly Adaptive LASSO for Vector Autoregressive Models

The LASSO (Tibshirani, J R Stat Soc Ser B 58(1):267–288, 1996, [30]) and the adaptive LASSO (Zou, J Am Stat Assoc 101:1418–1429, 2006, [37]) are popular in regression analysis for their advantage of simultaneous variable selection and parameter estimation, and also have been applied to autoregressive time series models. We propose the doubly adaptive LASSO (daLASSO), or PLAC-weighted adaptive L...

متن کامل

Least Tail-Trimmed Squares for In...nite Variance Autoregressions

We develop a robust least squares estimator for autoregressions with possibly heavy tailed errors. Robustness to heavy tails is ensured by negligibly trimming the squared error according to extreme values of the error and regressors. Tail-trimming ensures asymptotic normality and superp -convergence with a rate comparable to the highest achieved amongst M-estimators for stationary data. Moreov...

متن کامل

A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models∗

Recently, there has been a renewed interest in modeling economic time series by vector autoregressive moving-average models. However, this class of models has been unpopular in practice because of estimation problems and the complexity of the identification stage. These disadvantages could have led to the dominant use of vector autoregressive models in macroeconomic research. In this paper, sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009